The Plane Separation Axiom 8

Let $\{S, \mathcal{L}, d\}$ be a metric geometry and let $S_1 \subseteq S$. S_1 is said to Definition (convex set of points) be convex if for every two points $P, Q \in \mathcal{S}$, the segment \overline{PQ} is a subset of \mathcal{S}_1 .

- **1.** If S_1 and S_2 are convex subsets of a metric geometry, prove that $\mathcal{S}_1 \cap \mathcal{S}_2$ is convex.
- **2.** If ℓ is a line in a metric geometry, prove that ℓ is convex.
- **3.** Consider the set of ordered pairs (x,y) with $(x-1)^2 + y^2 = 9$, 0 < x < 4 and 0 < y. Explain is this set (and when it is) convex.

Definition (plane separation axiom (PSA), half planes)

A metric geometry $\{S, \mathcal{L}, d\}$ satisfies the plane separation axiom (PSA) if for every $\ell \in \mathcal{L}$ there are two subsets H_1 and H_2 of \mathcal{S} (called half planes determined by ℓ) such that

- (i) $S \ell = H_1 \cup H_2$;
- (ii) H_1 and H_2 are disjoint and each is convex;
- (iii) If $A \in H_1$ and $B \in H_2$ then $AB \cap \ell \neq \emptyset$.

Theorem Let ℓ be a line in a metric geometry. If $H_2 = H_2'$ or $H_1 = H_2'$ (and $H_2 = H_1'$). both H_1 , H_2 and H'_1 , H'_2 satisfy the conditions of PSA for the line ℓ then either $H_1 = H'_1$ (and

4. Prove the above theorem.

<u>Definition</u> (lie on the same side, lie on opposite sides, side that contains)

Let $\{S, \mathcal{L}, d\}$ be a metric geometry which satisfies PSA, let $\ell \in \mathcal{L}$, and let H_1 and H_2 be the half planes determined by ℓ . Two points A and B lie on the same side of ℓ if they both belong to H_1 or both belong to H_2 . Points A and B lie on opposite sides of ℓ if one belongs to H_1 and one belongs to H_2 . If $A \in H_1$, we say that H_1 is the side of ℓ that contains A.

Theorem Let $\{S, \mathcal{L}, d\}$ be a metric geometry which satisfies PSA. Let A and B be two points of S not on a given line ℓ . Then

- (i) A and B are on opposite sides of ℓ if and only if $AB \cap \ell \neq \emptyset$.
- (ii) A and B are on the same side of ℓ if and only if either A = B or $AB \cap \ell = \emptyset$.
- **5.** Prove the above theorem.
- **6.** Let ℓ be a line in a metric geometry which satisfies PSA. If P and Q are on opposite sides of ℓ and if Q and R are on opposite sides of ℓ

then P and R are on the same side of ℓ .

7. Let ℓ be a line in a metric geometry which satisfies PSA. If P and Q are on opposite sides of ℓ and if Q and R are on the same side of ℓ then P and R are on opposite sides of ℓ .

Theorem Let ℓ be a line in a metric geometry with PSA. Assume that H_1 is a half plane determined by the line ℓ . If H_1 is also a half plane determined by the line ℓ' , then $\ell = \ell'$.

8. Prove the above theorem.

Definition (edge) If H_1 is a half plane determined by the line ℓ , then the edge of H_1 is ℓ .

- **9.** Determine are the statements true or false:
- (a) If A, B are points, then AB is a convex set.
- (b) If A, B are points, then $\{A, B\}$ is a convex set.
- (c) The intersection of two convex sets is a convex set. (d) The union of two convex sets is a convex set. (e) $\overrightarrow{BC} = \overrightarrow{BC} \cap \triangle ABC$.
- **10.** Let ℓ be a line in a metric geometry $\{S, \mathcal{L}, d\}$ which satisfies PSA. We write $P \sim Q$ if P and Q are on the same side of ℓ . Prove that \sim

is an equivalence relation on $S-\ell$. How many equivalence classes are there and what are they?

11. Consider the distance function d_N defined on the Euclidean plane as follows: Let every line other than L_0 have the usual Euclidean ruler, and for the line L_0 , let the ruler be $f: L_0 \to \mathbb{R}$ where

$$f((0,y)) = \begin{cases} y, & \text{if } y \text{ is not an integer,} \\ -y, & \text{if } y \text{ is an integer.} \end{cases}$$

(You may assume that this function is a ruler.)

- (a) Show that $\{(0,y) \mid \frac{1}{2} \leq y \leq \frac{3}{2}\}$ is a convex set in $(\mathbb{R}^2, \mathcal{L}_E, d_E)$, the Euclidean plane with the usual Euclidean distance, but not in $(\mathbb{R}^2, \mathcal{L}_E, d_N)$, the Euclidean plane with the new distance.
 - (b) Find the line segment from $(0, \frac{1}{2})$ to $(0, \frac{3}{2})$

in $(\mathbb{R}^2, \mathcal{L}_E, d_N)$. Show that it is a convex set in $(\mathbb{R}^2, \mathcal{L}_E, d_N)$ but not in $(\mathbb{R}^2, \mathcal{L}_E, d_E)$.

(c) Show that $(\mathbb{R}^2, \mathcal{L}_E, d_N)$, the Euclidean plane with this new distance d_N , does not satisfy PSA, the Plane Separation Axiom.

9 PSA for the Euclidean and Poincaré Planes

Notation $(X^{\perp} \text{ or } X \text{ perp})$ If $X = (x, y) \in \mathbb{R}^2$ then X^{\perp} (read "X perp") is the element $X^{\perp} = (-y, x) \in \mathbb{R}^2$.

Lemma

- (a) If $X \in \mathbb{R}^2$ then $\langle X, X^{\perp} \rangle = 0$.
- (b) If $X \in \mathbb{R}^2$ and $X \neq (0,0)$ then $\langle Z, X^{\perp} \rangle = 0$ implies that Z = tX for some $t \in \mathbb{R}$.
- 1. Prove the above lemma.

Proposition If P and Q are distinct points in \mathbb{R}^2

$$\overleftrightarrow{PQ} = \{ A \in \mathbb{R}^2 \mid \langle A - P, (Q - P)^{\perp} = 0 \}.$$

2. Prove the above proposition.

Definition (Euclidean half planes)

Let $\ell = \overrightarrow{PQ}$ be a Euclidean line. The Euclidean half planes determined by ℓ are

$$H^+ = \{ A \in \mathbb{R}^2 \mid \langle A - P, (Q - P)^{\perp} \rangle > 0 \}.$$

$$H^{-} = \{ A \in \mathbb{R}^{2} \mid \langle A - P, (Q - P)^{\perp} \rangle < 0 \}.$$

Proposition The Euclidean half planes determined by $\ell = \overrightarrow{PQ}$ are convex.

3. Prove the above proposition.

Proposition The Euclidean Plane satisfies PSA.

4. Prove the above proposition.

<u>Definition</u> (Poincaré half planes)

If $\ell = L$ is a type I line in the Poincaré Plane then the Poincaré half planes determined by ℓ are

$$H_{+} = \{(x, y) \in \mathbb{H} \mid x > a\}, \qquad H_{-} = \{(x, y) \in \mathbb{H} \mid x < a\}.$$
 (2)

If $\ell = {}_{c}L_{r}$, is a type II line then the Poincaré half planes determine by ℓ are

$$H_{+} = \{(x,y) \in \mathbb{H} \mid (x-c)^2 + y^2 > r^2\}, \qquad H_{-} = \{(x,y) \in \mathbb{H} \mid (x-c)^2 + y^2 < r^2\}.$$

Proposition The Poincaré Plane satisfies PSA.

- **5.** Prove the above proposition.
- **6.** Prove that the Euclidean half plane H^- is convex.
- **7.** Let ℓ be a line in the Euclidean Plane and suppose that $A \in H^+$ and $B \in H^-$. Show that $\overline{AB} \cap \ell \neq \emptyset$ in the following way. Let

$$g(t) = \langle A + t(B - A) - P, (Q - P)^{\perp} \rangle \text{ if } t \in \mathbb{R}.$$

Evaluate g(0) and g(1), show that g is continuous, and then prove that $\overline{AB} \cap \ell \neq \emptyset$.

- **8.** If $\ell = {}_{a}L$ is a type I line in the Poincaré Plane then prove that
- a. H_{+} and H_{-} as defined in Equation (2) are convex.
 - b. If $A \in H_+$ and $B \in H_-$ then $\overline{AB} \cap \ell \neq \emptyset$.
- **9.** For the Taxicab Plane $(\mathbb{R}^2, \mathcal{L}_E, d_T)$ prove that
- a. If $A = (x_1, y_1)$, $B = (x_2, y_2)$ and $C = (x_3, y_3)$ are collinear but do not lie on a vertical line then A B C if and only if $x_1 * x_2 * x_3$.
 - b. The Taxicab Plane satisfies PSA.